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Effect of periodicity restrictions on the ground state of quantum systems with periodic potentials

Balázs Hetényi*
Department of Chemistry and Center for Biomolecular Simulation, Columbia University, 3000 Broadway, New York, New York

~Received 29 October 1999!

We investigate the effect of periodicity restrictions on the ground state of a quantum system. For a system
whose potential is periodic inL and whose wave function is restricted to be periodic innL, wheren is an
integer such thatn>1, we prove that observables periodic inL calculated at zero temperature are independent
of the value ofn. As a result the winding number may be restricted to a value ofw50 in ground state
calculations, as has been suggested by the numerical results of Heneliuset al. @Phys. Rev. B57, 13 382
~1998!#.

PACS number~s!: 05.30.2d
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Periodic systems in quantum mechanics have always b
of great interest. An example that has received consider
attention recently is the quantum anisotropic planar ro
~QAPR! model@1#, developed in an effort to understand th
quantum effects in the orientational ordering of diatomic a
sorbates on inert surfaces. The model consists of rigid
atomic molecules that are constrained to rotate on a p
due to the presence of the surface. Another system that
be described by a lattice of coupled one-dimensional rotor
that of coupled Josephson oscillators@2#. The list provided
here is far from complete, other examples abound in
literature@3#.

A system of rotors is distinct from a general periodic sy
tem in that there is a periodicity restriction on the wave fun
tion. In the case of molecular rotors, the periodicity of t
potential is such that it satisfies the periodicity restriction
the wave function, but the value in which the potential
periodic may in general be different from the value in whi
the wave function is restricted to be periodic~e.g., homo-
nuclear diatomic molecules!. For systems such as an electr
in the field of a periodic lattice, the potential is periodic, b
there is no periodicity restriction on the wave function.

In this report, we concentrate on a particular class of
riodic systems. We restrict the potential energy of a sys
to be periodic inL for all coordinates. Furthermore, we re
strict the wave function to be periodic innL, wheren is an
integer such thatn>1. Many examples of periodic system
fall into this class of systems~e.g., molecules performing
one-dimensional rotation, an electron in a periodic lattic!.
Although observables may be defined arbitrarily, in m
cases observables that characterize the class of system
fined above are periodic inL.

In the study of one-dimensional rotation a helpful conc
is that of the winding number. In the Feynman description
quantum statistical mechanics@4#, the partition function is
obtained by integrating over all cyclic paths in configurati
space. In Cartesian space cyclic paths are all deformable
each other. This is not so in the case of one-dimensio
rotation. Paths that wind around the circle a different num
of times are not deformable into each other. They fall in

*Present address: Department of Chemistry, Princeton Univer
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different homotopy classes, each class labeled by a diffe
value of the winding number. Paths in the same homoto
class are deformable into each other. The value of the w
ing number for a given path may be defined as the net n
ber of times the path winds around the circle@3,5#. The
winding number incorporates the effect of the periodic
restriction on the wave function into the path-integral rep
sentation.

Schulman has shown@5# that for systems whose paths fa
into different homotopy classes, the partition function m
be evaluated by path-integrating in each homotopy class,
then summing over each resulting contribution.

In calculating the properties of periodic systems, ca
must be taken in incorporating the periodicity restrictions
the wave function. For general quantum many-body syste
at finite temperatures, numerical results may be obtained
the path-integral Monte Carlo@6–8# ~PIMC! method. The
winding number may be incorporated into the PIMC in se
eral different ways@9,10#. Thus, finite temperature simula
tions of coupled rotors is possible. In the limit of zero tem
perature it has been conjectured based on numerical evid
by Heneliuset al. @11# that the winding number may be fixe
at w50. Proof for this assertion was only provided for th
case of free rotors. Fixing the winding number atw50 cor-
responds to simulating a system that does not have perio
ity restrictions on its wave function. If it was proven that th
winding number can be fixed atw50, then zero-temperatur
methods such as the diffusion Monte Carlo~DMC! @12–14#
method or the Green’s function Monte Carlo~GFMC!
@17,18# would not need to be modified to account for pe
odicity restrictions due to rotation.

The purpose of this Brief Report is to investigate the
sertion of Heneliuset al. mentioned above, and the role o
winding numbers for periodic systems at zero temperatu
We prove that restricting the winding number tow50 ~i.e.,
neglecting the periodicity restriction on the wave function! is
appropriate in the calculation of observables at zero temp
ture. The proof consists of two steps. First, we write t
partition function of a periodic system as defined above
terms of the winding number, and argue that in then5`
case the winding number may be fixed atw50 for any tem-
perature. Second, we prove that in the ground state obs
ables are independent ofn.

ty,
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Consider a particle with massm in a potential that is
periodic in L and whose wave function is restricted to
periodic in nL, wheren is an integer such thatn>1. We
treat a one-dimensional system here, but the concepts
trivially generalizable to the many-dimensional case. Ba
on the considerations above, and based on the result
Schulman@5#, we may write the partition function as

Q5 (
w52`

`

Qw , ~1!

whereQw is the contribution to the partition function from
one homotopy class,

Qw5E dxE
x

x1wnL

Dx~t!exp~2S!, ~2!

whereS is the Euclidean action

S5E
0

b

dtFm

2 S ]x~t!

]t D 2

1Vx~t!G . ~3!

In the above equations,x denotes the coordinate of the pa
ticle, w denotes the winding number, andb denotes the in-
verse temperature. Note that the paths contributing toQw are
not cyclic, unless the winding number is zero.

Qw is defined as the integral over all paths that end a
value that is displaced bywnL compared to their starting
point. The set of all such paths can be generated from the
of all cyclic paths by the transformation@16#

x~t!5 x̃~t!1
nLt

b
w, ~4!

wherex̃(t) denotes a member of the set of cyclic paths. T
transformation of Eq.~4! allows us to write the partition
function in a different form,

Q5 (
w52`

`

expS 2
mw2n2L2

2b D E dxE
x

x

Dx̃~t!exp~2Sw!,

~5!

where

Sw5E
0

b

dtFm

2
S ] x̃~t!

]t
D 2

1VS x̃~t!1
nLt

b
wD G . ~6!

Note, that the paths that enter the Euclidean actionSw are the
cyclic pathsx̃(t).

Upon inspecting the Gaussian term exp(2mw2n2L2/2b) in
Eq. ~5!, we can deduce the behavior of the system in vari
limits. At high temperatures (b→0), only the w50 term
contributes to the partition function@Eq. ~5!#. In this tem-
perature range, the periodicity restriction on the wave fu
tion may be neglected. As the temperature is lowered, w
ing numbers other than zero begin to contribute and
periodicity restriction can no longer be neglected. In theb
→` ~zero temperature! limit, all winding numbers of a given
coordinate contribute with equal probabilities to the Gau
ian term. For this reason, the assertion of Heneliuset al. @11#
is not obvious.
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In the limit n→` only thew50 winding number contrib-
utes to the partition function@Eq. ~5!#, and we recover the
partition function of a system whose wave function is n
restricted to be periodic. We now prove that ground st
observables are independent ofn.

Theorem: Consider a many-body Hamiltonian operato

H5T1V.

Let V be the potential energy operator, and assume that
operator is periodic inL for all coordinates. LetT be the
kinetic energy operator. LetF be an observable that is per
odic in L for all coordinates. Consider the following tw
systems, both of which have HamiltonianH: System A, the
wave function is restricted to be periodic innL for all coor-
dinates, wheren is an integer andn>1; System B, the wave
function is restricted to be periodic inL for all coordinates.

If these conditions hold, then the expectation value ofF
taken over the ground state of systemA is equal to the ex-
pectation valueF taken over the ground state of systemB.
Note that the Hilbert space of systemB is a subspace of the
Hilbert space of systemA.

Proof: Let Cg denote the ground state wave function
systemA. We may write

HCg~x!5EgCg~x!, ~7!

whereEg is the ground state energy, and the vectorx repre-
sents the coordinates of the system collectively.

Let Rm
i denote the operator that translates thei th coordi-

nate bymL, wherem is an integer. Operating onCg with Rm
i

produces a new function that satisfies Eq.~7!.
We construct a new function

C8~x!5C (
m151

n

, . . . , (
mN51

n

Rm1

1 , . . . ,RmN

N Cg~x!, ~8!

whereC is the normalization constant. By construction, t
functionC8 is periodic inL for all coordinates, and is there
fore a member of the Hilbert space of systemB. Further-
more,C8 satisfies

HC8~x!5EgC8~x!. ~9!

Since the space of all functions that are periodic inL is a
subspace of all functions that are periodic innL, the ground
state energy of the system that is restricted to be periodi
L cannot be less than the ground state energy of the sys
periodic innL. SinceC8 is periodic inL, and its energy is
Eg , it follows thatEg is the ground state energy of systemB.
The ground state energy of the two systemsA and B are
therefore equal.

For observables periodic inL, one can couple the observ
able to a constant field@15# and add it to the Hamiltonian
Since the observable is periodic inL, the theorem also holds
for the ground state energy of the system that is coupled
the field. Since the expectation value of the observable in
ground state is equal to the derivative of the ground s
energy of the coupled system at zero field, it follows th
observables are also equal for systemsA andB.

In making the connections between physical systems
cases relevant to the theorem we need to consider the m
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ing of the parametern. In the simplest casen51 the period-
icity associated with the rotation and the periodicity of t
potential are equal. A physical example of ann51 system is
adsorbed heteronuclear diatomics on a surface constrain
rotate on the plane. A system composed of homonuclea
atomics that are allowed to interconvert betweenortho- and
parastatescorresponds to the casen52. In this case the
periodicity of the rotation is twice the periodicity of the po
tential. An electron in an infinite periodic lattice is also su
ject to a periodic potential, but there are no restrictions on
wave function due to periodicity. Hence, then5` case cor-
responds to particles in infinite periodic lattices.

An important implication of the theorem concerns grou
state simulation methods. Then5` case of the theorem cor
nd

a-
to
i-

-
ts

responds to systems with no periodicity restrictions on
wave function. As we have pointed out earlier, in this ca
only the w50 term contributes to the partition function.
follows that in the zero-temperature limit, the winding num
ber can be neglected in a simulation. This is in contras
finite temperature simulation methods, where the wind
number needs to be included in the simulation. The asser
of Heneliuset al. is therefore true, provided that the symm
try of the observables in question are the same as the s
metry of the potential.

The author wishes to thank Professor Bruce J. Berne
stimulating discussions and making suggestions on
manuscript. This work was supported by an NSF grant
Professor Bruce J. Berne.
er-
@1# D. Marx and P. Nielaba, J. Chem. Phys.102, 4538~1995!.
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